August 1999 Revised May 2005 74ACT16373 16-Bit Transparent Latch with 3-STATE Outputs

74ACT16373 16-Bit Transparent Latch with 3-STATE Outputs

General Description

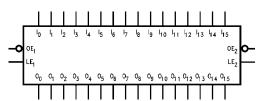
FAIRCHILD

SEMICONDUCTOR

The ACT16373 contains sixteen non-inverting latches with 3-STATE outputs and is intended for bus oriented applications. The device is byte controlled. The flip-flops appear transparent to the data when the Latch Enable (LE) is HIGH. When LE is low, the data that meets the setup time is latched. Data appears on the bus when the Output Enable (OE) is LOW. When OE is HIGH, the outputs are in high Z state.

Features

- Separate control logic for each byte
- 16-bit version of the ACT373
- Outputs source/sink 24 mA


Connection Diagram

TTL-compatible inputs

	-	
^ "~	~ * 1 ~ ~	Code:
UTO	erma	COOR

Order Number	Package Number	Package Description
74ACT16373SSC	MS48A	48-Lead Small Shrink Outline Package (SSOP), JEDEC MO-118, 0.300" Wide
74ACT16373MTD	MTD48	48-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide
Device also available in	Tape and Reel. Specify by	v appending suffix letter "X" to the ordering code.

Logic Symbol

Pin Descriptions

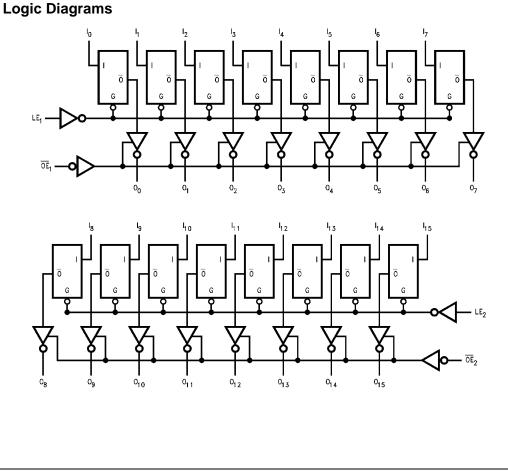
Pin Names	Description				
OEn	Output Enable Input (Active Low)				
LEn	Latch Enable Input				
I ₀ -I ₁₅	Inputs				
O ₀ -O ₁₅	Outputs				

0E1 —	1	48	— L E ₁
°0 —	2	47	- 1 ₀
°1 —	3	46	_ կ
GND —	4	45	— GNE
0 ₂ —	5	44	- 1 ₂
°3 —	6	43	- I ₃
v _{cc} –	7	42	- v _{cc}
°4 —	8	41	- 1 ₄
0 ₅ —	9	40	— 1 ₅
GND —	10	39	— GNE
° ₆ —	11	38	— I ₆
0 ₇ —	12	37	- 17
° ₈ —	13	36	— I ₈
0 ₉ —	14	35	— I9
GND —	15	34	— GNE
°10 —	16	33	- 40
° ₁₁ —	17	32	- 41
v _{cc} —	18	31	— v _{cc}
0 ₁₂ —	19	30	— I ₁₂
0 ₁₃ —	20	29	— I ₁₃
GND —	21	28	— GNE
0 ₁₄ —	22	27	— 4 ₄
0 ₁₅ —	23	26	- 45
0E ₂ —	24	25	— L E ₂

FACT[™] is a trademark of Fairchild Semiconductor Corporation.

Functional Description

The ACT16373 contains sixteen D-type latches with 3-STATE standard outputs. The device is byte controlled with each byte functioning identically, but independent of the other. Control pins can be shorted together to obtain full 16-bit operation. The following description applies to each byte. When the Latch Enable (LE_n) input is HIGH, data on the D_{n} enters the latches. In this condition the latches are transparent, i.e., a latch output will change states each time its D input changes. When LE_n is LOW, the latches store information that was present on the D inputs a setup time preceding the HIGH-to-LOW transition of $\rm LE_n.$ The 3-STATE standard outputs are controlled by the Output Enable (\overline{OE}_n) input. When \overline{OE}_n is LOW, the standard outputs are in the 2-state mode. When \overline{OE}_n is HIGH, the standard outputs are in the high impedance mode but this does not interfere with entering new data into the latches.


Truth Tables

	Inputs		Outputs
LE ₁	OE ₁	I ₀ —I ₇	0 ₀ –0 ₇
Х	Н	Х	Z
н	L	L	L
н	L	Н	н
L	L	Х	(Previous)
	Innute		Outputs
	Inputs		Outputs
LE ₂		I ₈ –I ₁₅	0 ₈ -0 ₁₅
LE ₂ X	•	I ₈ –I ₁₅ X	
	OE ₂		0 ₈ –0 ₁₅
Х	OE ₂	X	0 ₈ –0 ₁₅

L = LOW Voltage Level

X = Immaterial Z = High Impedance

Previous = previous output prior to HIGH-to-LOW transition of LE

www.fairchildsemi.com

Absolute Maximum Ratings(Note 1)

Supply Voltage (V _{CC})	-0.5V to +7.0V
DC Input Diode Current (IIK)	
$V_I = -0.5V$	–20 mA
$V_{I} = V_{CC} + 0.5V$	+20 mA
DC Output Diode Current (I _{OK})	
$V_{O} = -0.5V$	–20 mA
$V_{O} = V_{CC} + 0.5V$	+20 mA
DC Output Voltage (V _O)	-0.5V to V _{CC} + 0.5V
DC Output Source/Sink Current (I _O)	+50 mA
DC V _{CC} or Ground Current	+50 mA
per Output Pin	
Junction Temperature	+140°C
Storage Temperature	-65°C to+150°C

Recommended Operating Conditions

Supply Voltage (V _{CC})	4.5V to 5.5V
Input Voltage (V _I)	0V to V _{CC}
Output Voltage (V _O)	0V to V_{CC}
Operating Temperature (T _A)	-40°C to +85°C
Minimum Input Edge Rate ($\Delta V/\Delta t$)	125 mV/ns
V _{IN} from 0.8V to 2.0V	
V _{CC} @ 4.5V, 5.5V	

74ACT16373

Note 1: Absolute maximum ratings are those values beyond which damage to the device may occur. The databook specifications should be met, without exception to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. Fairchild does not recommend operation of FACT™ circuits outside databook specifications.

DC Electrical Characteristics

Symbol	Parameter	v _{cc}	$T_A = +25^{\circ}C$		$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	Units	Conditions
		(V)	Тур	Typ Guaranteed Limits			
VIH	Minimum HIGH	4.5	1.5	2.0	2.0	V	$V_{OUT} = 0.1V$
	Input Voltage	5.5	1.5	2.0	2.0	v	or $V_{CC} - 0.1V$
V _{IL}	Maximum LOW	4.5	1.5	0.8	0.8	V	V _{OUT} = 0.1V
	Input Voltage	5.5	1.5	0.8	0.8	v	or V _{CC} – 0.1V
V _{OH}	Minimum HIGH	4.5	4.49	4.4	4.4	V	L 50 A
	Output Voltage	5.5	5.49	5.4	5.4	v	I _{OUT} = -50 μA
							$V_{IN} = V_{IL} \text{ or } V_{IH}$
		4.5		3.86	3.76	V	$I_{OH} = -24 \text{ mA}$
		5.5		4.86	4.76		I _{OH} = -24 mA (Note 2)
V _{OL}	Maximum LOW	4.5	0.001	0.1	0.1	V	I _{OUT} = 50 μA
	Output Voltage	5.5	0.001	0.1	0.1	v	ι _{OUT} = 50 μΑ
							$V_{IN} = V_{IL} \text{ or } V_{IH}$
		4.5		0.36	0.44	V	$I_{OL} = 24 \text{ mA}$
		5.5		0.36	0.44		I _{OL} = 24 mA (Note 2)
I _{OZ}	Maximum 3-STATE	5.5	.5 ± 0.5 ± 5.0	±0.5 ±5.0 μA	٥	+ 5 0 A V	$V_{I} = V_{IL}, V_{IH}$
	Leakage Current	5.5		± 0.5	± 5.0	μΛ	$V_{O} = V_{CC}, GND$
I _{IN}	Maximum Input	5.5		± 0.1	± 1.0		V _I = V _{CC} , GND
	Leakage Current	5.5		± 0.1	± 1.0	μΑ	$v_{\rm I} = v_{\rm CC}, \text{GND}$
ICCT	Maximum I _{CC} /Input	5.5	0.6		1.5	mA	$V_I = V_{CC} - 2.1V$
I _{CC}	Max Quiescent Supply Current	5.5		8.0	80.0	μΑ	$V_{IN} = V_{CC}$ or GND
I _{OLD}	Minimum Dynamic	5.5			75	mA	V _{OLD} = 1.65V Max
IOHD	Output Current (Note 3)			1	-75	mA	V _{OHD} = 3.85V Min

Note 2: All outputs loaded; thresholds associated with output under test.

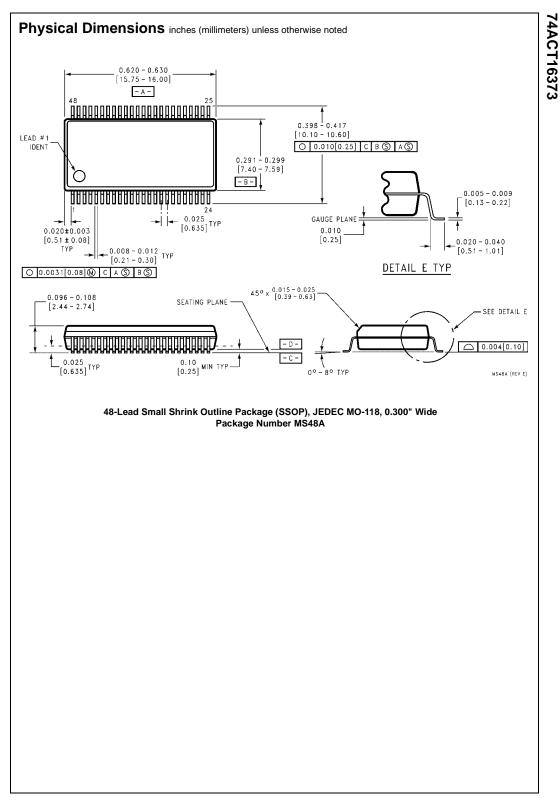
Note 3: Maximum test duration 2.0 ms; one output loaded at a time.

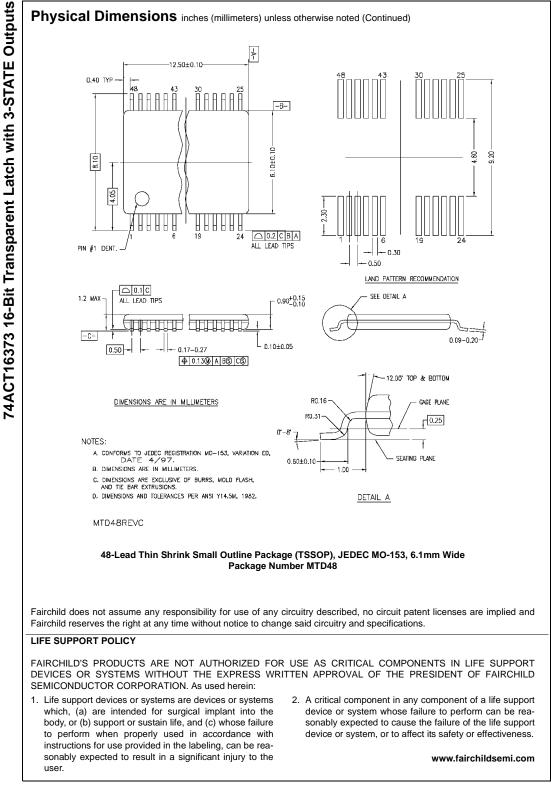
www.fairchildsemi.com

74ACT16373

AC Electrical Characteristics

Symbol	Parameter	V _{CC}		T _A = +25°C C _L = 50 pF			T _A = -40°C to +85°C C _L = 50 pF	
Symbol	Parameter	(V) (Note 4)	Min	Тур	Max	Min	Max	Units
PLH	Propagation Delay	5.0	3.1	5.3	7.9	3.1	8.4	
t _{PHL}	D _n to O _n		2.6	4.6	7.3	2.6	7.8	ns
t _{PLH}	Propagation Delay	5.0	3.1	5.4	7.9	3.2	8.4	ns
t _{PHL}	LE to O _n		2.8	4.9	7.3	2.8	7.8	115
t _{PZH}	Output Enable	5.0	2.5	4.7	7.4	2.5	7.9	
t _{PZL}	Delay		2.7	4.8	7.5	2.7	8.0	ns
t _{PHZ}	Output Disable	5.0	2.1	5.1	7.9	2.1	8.2	
t _{PLZ}	Delay		2.0	4.5	7.4	2.0	7.9	ns


AC Operating Requirements


Symbol	Parameter	V _{CC} (V) (Note 5)	T _A = +25°C C _L = 50 pF Guara	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$ $C_L = 50 \text{ pF}$ nteed Minimum	Units
t _S	Setup Time, HIGH or LOW, Input to Clock	5.0	3.0	3.0	ns
t _H	Hold time, HIGH or LOW, Input to Clock	5.0	1.5	1.5	ns
t _W	CS Pulse Width, HIGH or LOW	5.0	4.0	4.0	ns

Note 5: Voltage Range 5.0 is 5.0V \pm 0.5V

Capacitance

Symbol	Parameter	Тур	Units	Conditions
C _{IN}	Input Capacitance	4.5	pF	$V_{CC} = 5.0V$
C _{PD}	Power Dissipation Capacitance	30	pF	$V_{CC} = 5.0V$

www.fairchildsemi.com